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This paper reports some experiments on the use of adaptive 
Chebyshev pseudospectral methods for compressible mixing layer 
computations. Different functionals measuring the optimality of the 
polynomial approximation are discussed and compared. In particular, 
we address the problem of the practical computation of the various 
functionals. The utility of the self-adaptive method is then 
demonstrated by some examples from compressible mixing layer 
calculations. © 1992 Academic Press, Inc. 

I. INTRODUCTION 

Spectral methods are among the most powerful methods 
to solve partial differential equations with smooth solutions. 
However, for problems whose solutions exhibit large 
derivatives, such as those arising, for instance, in fluid 
mechanics or combustion studies, these methods are dif- 
ficult to apply when the large gradients are not localized 
near the boundaries, and specialized techniques like 
domain-decomposition or change of variables are required 
(see, e.g., [12, 21]). In [13, 4], an adaptive spectral method 
was introduced to deal with such problems. The principle of 
the method is to write the equations in a computational 
domain through a parametrized mapping. This change of 
variables is then adapted to the computed solution by mini- 
mizing a certain functional of the solution. In [13, 4], 
motivated by some theoretical estimates of the convergence 
rate of the polynomial approximation, this functional was 
chosen as the weighted Sobolev norm in H 2. In these 
papers, numerical results of some relevant combustion 
problems were presented showing the effectiveness of the 
method. In [3 ], an alternate functional based on the mini- 
mization of the leading term of the interpolation error was 

introduced. These techniques prove to be very efficient in 
combustion studies and beautiful results including the com- 
putation of cellular flames [3] and pulsating solutions in 
solid fuel combustion [6, 5 ] were obtained with them. Some 
recent studies [1] also show that these methods can help 
in computing the solutions of (almost) discontinuous 
problems described by hyperbolic equations. 

In this paper, we report some numerical experiments on 
the use of adaptive Chebyshev techniques in the computa- 
tion of compressible mixing layers. Spectral Chebyshev 
calculations of mixing layers for compressible as well as 
incompressible fluids are difficult because large gradients 
are located in the middle part of the computational domain. 
A standard spectral procedure cannot be utilized and other 
techniques must be employed, namely domain-decomposi- 
tion or adequate mapping that expands the region of large 
derivatives. This latter technique is considered in the present 
paper which compares and discusses the use of different 
functionals whose minimisation defines the coordinate 
transform: the weighted Sobolev H 2 norms proposed in 

co 

[13, 4], the non-weighted H 2 norm, as well as the func- 
tional proposed in [3 ] are tested. This latter choice deserves 
some comments and in particular we show that this func- 
tional is in fact related to the derivation in the Fourier space 
of the trigonometric polynomial associated to the 
Chebyshev approximation of the function under considera- 
tion. The results confirm the utility of the adaptive techni- 
ques and show that, at least in the present case, the choice 
of a specific functional is not too critical. However, we found 
that the actual computation of the functional is critical and 
must be carefully done. In particular, it is often useful to 
apply some filtering to the quantity to be minimized. 

The outlines of the paper are as follows: In Section II, 
we make precise the principle of the adaptive method and 
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discuss the use of different functionals. Section III deals 
with the practical computation of the functionals. Finally, 
in Section IV, we illustrate the use of these methods by 
some relevant results from compressible mixing layer 
computations. 

II. THE ADAPTIVE SPECTRAL METHOD 

We are interested in solving evolution equations of the 
type: 

- ~  -~- A bl ~- O , X I ~ X ~ X 2 (1) 

where A is some spatial differential operator. It is known 
that when the solution of (1) exhibits rapid spatial changes, 
spectral methods suffer from the appearance of oscillations 
that can destroy the accuracy and stability of the computa- 
tion. In order to improve the capability of these methods 
to compute such solutions, we introduce a mapping 
x = f (a ,  ~), wherefis  a known function and a is a parameter 
vector to be determined. Equation (1) is then transformed 
by this mapping to obtain another evolution equation, 

Off 

denoted by r/(see Fig. 1 ) and consider the function ~ defined 
by 

dtn(tl)=un(f(b,q))=(tn(f-'(a,f(b,~l))). (5) 

For each r/, the value of fi can be computed by the following 
expression: 

K 

fin(q) = ~ akT~(f l(a,f(h, r/))). (6) 
k = O  

(Note that, in general, ~ is not a polynomial except ifa = b). 
The principle of the adaptive method is then to choose b in 
such a way that fi would have a nice representation in the 
Chebyshev basis {Tk(r/)}, k=O,...,K. Then ~ will be 
replaced by its Chebyshev interpolant and the computation 
will proceed in the new coordinate system until a new 
adaptation is found to be necessary. The measure of the rate 
of convergence of the Chebyshev expansion of fi is done 
by considering a certain functional J(fi). It is clear that 
the efficiency of the adaptive method depends directly on 
the choice of this functional. There are clearly a lot of 
possibilities. An obvious choice is to define this functional 
by an expression of the form 

K 

Z - :  = dka~, (7) 
k = 0  

that will be solved by a standard Chebyshev spectral 
method (for instance, a collocation method). We call the 
x-space the physical space while the i-space is called the 
computational space. Let us assume that by some means, 
the value of the parameter a has been chosen for the time 
levels t j, j = 0 , . . . , n ,  and that we have obtained the 
approximate solutions of (1) and (2) for these time levels. 
Thus at t = t n, the approximate solution is available as a 
finite sum of Chebyshev polynomials in the computational 
space, 

K 

t~n(~)= ~ akTk(~) (3) 
k = 0  

and, in terms of transformed Chebyshev polynomials in the 
physical space, 

K 

U"(X)=~n(f l ( a , x ) )=  ~ akTk(f-l(a,x)). (4) 
k = O  

We then have to compute the approximate solution at 
t = t n + ~. If the solution is rapidly evolving, it is likely that 
there will be a time index n where the coordinate transform 
have to be changed in order to follow the behavior of the 
solution. For this, we introduce a new parameter b and a 
new computational space whose independent variable is 

where fik are the computed Chebyshev coefficients of t~ and 
dk is a positive increasing function of k. Such a functional 
gives more and more weight to the coefficients fik as k 
increases and then tends to be small for functions with fast 
convergence rate. Actually, the functional proposed in [3] 
is of the form (7) with dk a monomial in k. We recall here the 
definition of this functional which was originally introduced 
by a minimisation of the leading term of the projection error 

. . . .  

Computational 
Space 

~ x - f ( a , ~ )  

7/ 
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FIG. 1. Coordinate transforms. 
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where re(s) = (1 - $ 2 )  - 1/2 is the Chebyshev weight and L is 

the operator defined by Lu = x/1  - s 2 du/ds. The reason for 
our notation lulj.~o~ will appear below. To prove our claim 
that this functional is indeed of the form (7), we first remark 
that the operator L is the derivation in the Fourier space of 
the even function 5 defined on [ - n ,  u]  by 5(0) = u(cos 0). 
More precisely, using the change of variables formula, we 
obtain 

+1 r~(dY~2 
f 1 (LJu)2(A)(s)ds~-fo ~dOJ/] dO (9) 

and therefore ul2¢o~ is exactly equal to (rt/2) x ' ~  ~ /z2J~ 2 d--,k~0 t~kr~" t~k' 

where ak are the Chebyshev coefficients of u, and ck has the 
usual meaning, ck = 1 for k > 0 and ck = 2 for k = 0. This 
remark also shows that this functional provides a rigorous 
bound of the projection error in the L 2 norm. Actually we 
have: 

PROPOSITION II.1. For any real (r and any function v such 
that Iv] . . . . .  < +oo, the inequality 

ILV-- PKVlIo,~ ~ K ~ Ivl . . . . .  (lO) 

holds, where Ilvllo,~ is the weighted L 2 norm, vllgo~= 
~ ~1 Lv(s)l 2 o)(s) ds, and PK is the L 2 projection in the space 
o f  polynomials o f  degree K. 

Proo f  The proof  of this statement follows immediately 
from the proof  of Theorem 2.1 in [10]. We have 

I I v -  PKvll~,,o = I v -  PKvl 2 .... 

oo 

co 
L - - 2 a  t2c~ 2 ---- K CkK a k 

2 k =  +1 

7r ~ ckk2Oa ~ 
~< 2KZa k=K+ 1 

1 
- < ~ ;  lul~,co~, l 

Therefore, the functional Ivl . . . . .  provides a rigourous 
bound of the projection error in the L 2 norm. Because one O9 
obviously has Iv[ . . . . .  ~ Nvll . . . .  with b[vl] ..... the norm of the 

2 Sobolev space H a ~, defined when a e N  by Ilvll~,o~= 
~ = 0  [IdJv/dsql2,o, this bound is, in some sense, tighter that 
the bound obtained by replacing ]vl . . . . .  by 1] v I[ ~,o~ as done in 
[10J. This explains the comment (c), p. 431 in [3].  

We now turn to the description of the functionals 
originally considered in [ 13, 4]. Using Proposition II. 1 and 
the preceding remark, it is clear that the H~  norm can also 
be chosen as a functional bounding the projection error in 

L~. Moreover, this norm is also a bound of the projection 
error in higher order norms as expressed in the following 
estimate [10]: 

PROPOSITION II.2. For any cr and # such that 1 <~ # <<. rr, 
there exists a constant C such that 

IIv - PKvlI~,,~ ~ C(~r) K 2~-~ 1/2 IlvlI . . . .  

Vv e H ~ co" (11) 

Therefore in [13, 4], the measure of the rapidity of the 
convergence of the Chebyshev expansion of fi was taken as 
the functional: 

2 ~ ( 1 2 )  J ~ ( u )  = II~H2,~. 

Many other possible choices can be deduced from (11). In 
fact, (11) defines a family of error bounds and the actual 
error is the smallest of the right-hand side of (11 ). Therefore 
alternate definitions of the functional can be obtained by 
using for instance rr = 1 or rr = 3 in (12) instead of cr = 2. 
These latter choices were also tested in [13, 4], where it was 
shown that rr = 1 does not give good results, while the 
results obtained with ~ = 3 were not significantly different 
from the ones obtained with cr = 2. Also, in the estimate 
(11), we observe that Ilvll,,-¢0 can be replaced by 
Ildv/dsll ~_ a,o~ which can be used to define another family of 
functionals (in practice, not very different from the previous 
ones). These last functionals are effectively used in the 
present calculations, but for reasons of simplicity, the nota- 
tion ILvll ~,,o will be conserved. 

We also mention that, for neither of the two families of 
functionals we have discussed, the function that realizes the 
minimum of the functionals is a polynomial of degree one. 
This seems surprising because one could expect this func- 
tion to be the simplest one represented by a polynomial 
expansion. On the contrary it can be shown that the function 
that realizes the minimum of the I ' l j ,  cos functionals is 
u(x)  = a + b arc cos x which does not even belong to H A 
and whose Chebyshev coefficients are decreasing only like 
k -2. A functional whose minimum is attained on a polyno- 
mial of degree 1 is defined by the non-weighted H 2 norm. 
Therefore, we have also tested this functional in our 
experiments. 

Finally, it must be noted that the adaptive methods are 
based on the minimization of some estimate of the inter- 
polation error. The actual error of the numerical solution of 
a differential problem also depends on the stiffness of the 
mapping. Hence a too severe mapping could alter the 
accuracy of the approximation as mentioned in [2, 13]. 
Some theoretical results on this point can be inferred from 
[18], while numerical experiments on the convergence of 
mapped Chebyshev methods are reported in [7]. 
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III. PRACTICAL IMPLEMENTATION 
OF THE ADAPTIVE METHOD 

A crucial point in the above algorithm is the actual com- 
putation of the functionals J(fi). Even, if the value of the 
function ~(q) is known for each q by formula (6), the exact 
computation of J(fi) is impossible and, in practice, we have 
to use a quadrature formula to evaluate this integral. We 
describe below three ways to perform this evaluation. 

METHOD A. In this method, we replace fi by its inter- 
polated polynomial IK(fi). Thus, in principle, the computa- 
tion of the different functionals require only the use of a 
Chebyshev transform (for the I'l . . . . .  semi-norm) or of a 
Gauss-Lobat to  integration formula (for the II" Ilo.,o norm). 
However, this requires us to compute the value of fi at the 
collocation points qk = cos(kTr/K), k = 0 .... , K. Going back 
to formula (6), we see that this implies the computation of 
f -  l (a , f (  b, qk)) for k = 0, ..., K, and then the computation of 
the matrix T j ( f  i (a ,f(b,  qk))). B e c a u s e f - l ( a , f (  b, q~))is 
not a collocation point in the q-space, this matrix must 
be computed using the formula Tj(s)---cos(jarc cos(s)), 
defining the Chebyshev polynomials. In other words, each 
computation of the functional implies projection of u in 
q-computational space. This process can be rather costly 
because of the numerous uses of the arc cos function. 

functionals used in this paper can be performed in the same 
way. Note that Methods A and B are not equivalent because 
interpolation and integration do not commute. Figure 2 
compares the results obtained by the two methods in the 
computation of J~(~)) as a function of b, where fi(q)= 
u(f(b, q)) with u(x) = ½ tanh(2x) and the coordinate trans- 
formf(b ,  r/) is defined by 

x = f ( b , q ) = L [ ( 1 - b ) q 3 + b q ] ,  - 1  ~<t/~<l, (13) 

where L the length of the half-domain is L = 7.53. In this 
test, we assume that the function if(i) is initially defined at 
the collocation points of the ~-coordinate system by ~7(I)= 
u(f(a, i ) )  with a=0.15.  With a number of collocation 
points equal to 72, the two computations lead to almost the 
same results. When 36 collocations points are used, it can be 
seen that the results are, again, practically identical in the 
vicinity of the optimal parameter. Method B appears to be 
more accurate than Method A; moreover, Method B is less 
expensive than Method A by almost a factor of 2 because it 
avoids the projection of u in q-computational space. 

METHOD C. A third way to compute the functionals can 
be devised as explained now. Again, for the clarity of the 
exposure, we shall only consider the minimisation of the H~  

METHOD B. An alternative is to transform the integral 
J(~) in the current i-coordinate system before computing it. 
For  clarity of the exposure, we shall describe below the com- 
putation of the Ho~ functional, but the discussion is not 
restricted to the use of this norm. First, using the change of 
variable theorem, we obtain 

0 I I I 

J~ method A : 72 points 
. . . . . . .  method B : 72 points I . . . . .  method A : 36 points 

60 ~- .................... method B : 36 points 

f~, (a.(q)) 2 ~o(q) dq 

where ~b is the one-to-one mapping between the i and q 
coordinate systems defined by q = ~ b ( i ) = f  l(b,f(a,  ¢)). 
Because ff~(¢) is known at the Gauss-Lobat to points, this 
integral can easily be evaluated by 

50 

40 

30 

20 

fll (/Jr/(q)) 2 o)(q) dq 

~ c~ (~(~))2 o(~(G)) 

where c~ = 1 for k e { 1 --. K -  1 }, and Co = cK = 2. The com- 
putation of the other integrals appearing in the various 

10 

0 I I I I I 

0 0.2 0.4 0.6 0.8 b 1 

FIG. 2. Comparison of methods A and B for computing the func- 
tional J~. 
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norm. Instead of replacing Q by IK(5) in J~)(5), we could use 
definition (5) and the chain rule to obtain the equality 

J~(5)) 2 =f~_~ ~¢( f - ' ( a , f (b ,  r/))) 

' h  r/))) 2 f ( , r / )  
x f ' ( a , f - ~ ( a , f ( b ,  

~o(r/) dr/, 

where f '  is the derivative of f with respect to its second 
argument. This expression may be approximated by 

( J~(5) )  ~ ~  - Ck u~(f-l(a,f(b,r/k))) 
k=O 

t b 2 f ( , r/k) 
X Pa - 

f ( , f  ~(a,f(b, r/k))) 

This expression differs from (J~+(IK(5))) 2 because deriva- 
tion and interpolation do not commute. Because, in general, 
at two successive time indexes we have b ~-a, one may be 
tempted to simplify (15) by doing the identifications: 

f f(f-~(a,f(b,  r/k))) -~ ~(r/k); 

tTe(f- ~(a,f( b, r/k))) ft¢(~k) 
f ' (a , f  l(a,f(b, r/k))) - -f ' (a ,  r/k) 

- -  - ux(f( a, r/k)). 

In other words, the value of the above quantities are 
attached to the index k and not to their position in physical 
space. Similar simplifications are almost always used in 
adaptive techniques with finite difference methods. If such a 
simplification is done, (15) simply reduces to 

K 
( J~(5) )  2 ~ ~ ck lux(xk)l 2, [ f 'Cb,  r/k)] 2, 

k=0 

with Xk=f(a, r/k), 

and as in Method B, we avoid the projection of the u func- 
tion in q-computational space. Our experience with mixing 
layer computations, as well as with the Burgers' problem 
treated in [ 13], is that the use of this simplification cannot 
be done without the inclusion of a penalty term in the defini- 
tion of the functional, to prevent the jacobian of the change 
of variable to become too large. For example, in the mixing 
layer computations (see Section IV) when using this sim- 
plification, the adaptive algorithm always yields the maxi- 
mum clustering of the collocation points in the vicinity of 
the x-axis, although the width of the layer is continuously 
increasing. On the contrary, the complete computation of 
the functionals 115112.0, 1512 ..... or 115112 by Method A or B 
leads to a correct behavior of the change of variable that 
nicely follows the evolution of the width of the mixing layer, 
as will be seen in Section IV. Moreover, we never need to 

include a penalty term in the functionals. Therefore, we do 
recommend the complete computation of the functionals by 
Method A or B and especially by Method B; that would be 
preferred in terms of CPU cost. 

In the computation of J(5),  we also found it useful to 
(14) apply a smooth filter (here, a raised-cosine filter has been 

used) to the function ft. We emphasize that this filtering 
only serves to define the new mapping and is not used to 
compute the unknowns at subsequent times. The utility of 
smoothing the argument of the functional can be under- 
stood as follows: It is clear from formula (6) that if the func- 
tion ~ is not very well behaved, then the function 5(b) will 
also be ill-behaved for certain values of the parameter b. 
In particular, for these values the computation of the func- 

(15) tional J (b )=  J(5(b)) may be very inaccurate, leading, for 
example, to the existence of several local minima. As a con- 
sequence, the minimisation algorithm may be unsuccessful 
or converge to a bad value. But, it is precisely when 
becomes ill-behaved, that a new change of variable is com- 
puted. This situation then is likely to occur. Therefore, to 
avoid this type of problem, it is advantageous to use as an 
argument of the functional a smooth function obtained by 
filtering ~ in the y-direction. 

(16) As an illustration, we consider in Fig. 3 the behavior of 
the parameter a defining the mapping used in the mixing 
layer computations (see Eq. (26), Ly = 25). This computa- 
tion was done with 41 points in the x-direction and 81 in the 
y-direction which is barely enough. It is apparent that when 
no filtering is done (dotted curve) that the value of the 
parameter oscillates around an increasing mean value. As 
explained above, this results from a lack of accuracy in the 
computation of the functional leading to the existence of 
several local minima. 

On the contrary, when a filtering is applied, the functional 
is convex with a unique minimum, giving a smooth 

(17) behavior of the change of variable. We also note that 
filtering the argument of the functional has a beneficial 
influence on the number of changes of mapping that are per- 
formed. Because a change of mapping is costly (one has to 
interpolate in the new coordinate system the whole fields of 
the different unknowns), it is advantageous to perform this 
change of mapping as seldom as possible. In the present 
computations, a change of mapping is done only if the new 
computed value of the parameter a differs by more than 1% 
from its current value. In the previous case, 31 changes of 
mapping have been done between t = 0 and t = 20 when the 
filtering was applied, while in the absence of filtering, the 
number of performed changes of mapping was 44. 

In addition to the adaptive algorithm described above, 
the functional can also be used to monitor the number of 
collocation points as in [3] by requiring the error to be 
lower than a prescribed level. For instance, in the mixing 
layer computations presented below, we define two func- 
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Evolution of parameter a versus time: influence of filtering. 

tionals I and J in the x and y directions, respectively, to 
control the number of collocation points in each space 
direction. This is done by enforcing the following conditions: 

I J 
XT~r2 < ~;x, N 2 < gy. N x  y 

Now we summarize the complete adaptive algorithm. It 
begins after the computation of the solution W ~ at the nth 
time-cycle and of the functionals I and J respectively in the 
x- and y-directions; a is the current value of the parameter 
and Jref is the minimum of the functional at the last adapta- 
tion, when a was chosen. The adaptation procedure is as 
follows: 

II-- if  {I(b) /N 2 > ex} 
increase Nx in the same way as for Ny 

else, end of adaptation 
endif 

In the mixing layer computations reported below, the 
parameters ex, ey, ~, and fl have the values: gx = gy = 0.005, 
~=f l=0 .01 .  The minimization of the functional was 
obtained by the golden section search. 

IV. COMPUTATION OF TEMPORALLY GROWING 
COMPRESSIBLE MIXING LAYERS 

Interest in computation of compressible mixing layers has 
been growing in the last few years, due to their application 
in Scramjet conception. Figure 4 is a sketch of the time- 
developing mixing layer considered in this paper. The basic 
initial state has constant pressure and total enthalpy. The 
vertical component of velocity is zero while the horizontal 
component has an inflection point and is unstable to small 
disturbances. A small perturbation (random or sinusoidal) 
is added to this basic state. We refer to [8, 9, 11, 17, 163 for 
linear stability analyses of this problem. Instability occurs 
for any convective Mach number and Reynolds number; 
nevertheless, effects of compressibility and viscosity are 
stabilizing. Direct numerical simulations of this type of 
flows have been appearing for the last few years, using either 
Euler or Navier-Stokes equations. The numerical methods 
typically used are finite-difference schemes with or without 
TVD-type viscosity, except in [ 14, 24], in which high-order 
compact difference schemes are used. With respect to 
spectral methods, while analogous computations have been 
carried out for the incompressible problem [20, 23, 19, 153, 
results of direct simulations of compressible mixing layers 
using these methods have not yet been published. The 
difficulties are various and rather important: first, as for 
the incompressible mixing layer, the initial distribution of 
horizontal velocity shows very substantial gradients at the 
center of the domain. Moreover, when time increases, as the 

I-- i f  {J(a) - Jref/Jref > g} 
find min b J(b). 
if { Jib - all/l[all > fl} 

project W" in the new computational space 
using formula (6) 

if > 

increase Ny up to the next value admissible 
by the FFT subroutine (2P3q5 r) 

else, go to step II 
else, go to step II 

endif 

UOO 

FIG. 4. Initial configuration. 

6i 
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layer thickens and rolls up, the stiff gradients move from 
their initial location and lose their privileged directions. In 
addition, specific problems appear in. the compressible case: 
(a) when the convective Mach number is sufficiently large, 
vertical shocklets appear within the flow; (b) in supersonic 
cases (not considered here), additional unstable modes with 
slow decay in the free stream are present; (c) compressibility 
effects slow down the development of the instability, leading 
to an increase of integration time with respect to the incom- 
pressible case. For instance, with a Reynolds number equal 
to 1000, we found that the characteristic time for vortex 
pairing is about 95 for a convective Mach number of 0:3, 
while it is 110 for a convective Mach number of 0.5. The aim 
of this paper is to show the efficiency of the adaptive method 
in capturing the vertical gradients and no special treatment 
for resolving horizontal gradients has been developed; 
therefore the application field of the present method is 
restricted to shock-free configurations. Nevertheless, the 
method can correct a lack of accuracy in the x-direction by 
automatically increasing the number of collocation points. 

The equations governing the flow are the two-dimen- 
sional, time-dependent Navier-Stokes equations for com- 
pressible fluids, which, in dimensionless form, are written 

p, + (pu)x + (pv)y = o 

( p U ) t  + ( p u  2 -t- P)x + (pUV)y 

1 
= Re E(~.).~ + (~12)d 

(or), + (p~v)., + (pv ~ + p)y 

1 

= R e  [ ( ¢ ~ 0 x  + (¢~).~] 

p, + yp(ux + Vy) + upx + vpy 

1 
Re M.pr2 [(kT~)~ . . . .  + (kTv)~] 

7 - 1  
"}" - ~ - e  [T 11UX -~- 27 12(UY -}- Ux) -}- T22 1)Y ]* (18) 

In these equations, x and y are the spatial directions, t the 
time, and subscripts refer to partial derivatives, p is the 
density, T the temperature, p the pressure, u and v the 
horizontal and vertical components of the velocity, and 7 is 
the ratio of specific heats. The viscosity # and the thermal 
conductivity k are equal, either constant (equal to 1) 
or given by Sutherland's law; r u  =21~(2ux-vy)/3, "~12 = 
#(uy + Vx), and %2 = 2#(2vy-ux)/3 are the components of 
the viscous stress tensor. The dimensionless numbers 
appearing in (18) (Reynolds, M ach, and Prandtl numbers), 
are defined as 

2 u oo (~ i p oo 
Re 

#oo 

2//oo 
M ,  - - - -  2M~,  (19) 

x / y ~  Too 

Pr = Cp#oo 
koo 

In these expressions, C~ is the specific heat at constant 
pressure and ~ is the perfect gas constant. The non-dimen- 
sionalisation has been performed using, the initial vorticity 
thickness 6i as the length unit, the velocity difference across 
the layer 2uoo as the velocity unit, and Too, P~o,/zoo, and koo 
the temperature, density, viscosity, and thermal conduc- 
tivity in the free stream as units. Finally, the Navier-Stokes 
equations are completed by the perfect gas equation of state 
which, in dimensionless form, is written 

1 
p = ~ p T. (20) 

7 M .  

The initial conditions are composed of a basic state upon 
which is superimposed a small perturbation. The basic 
horizontal velocity profile is hyperbolic tangent, and there is 
no vertical velocity; the pressure is constant and the tem- 
perature is calculated from boundary-layer approximation 
with Pr = 1 (in other terms, the total enthalpy of the basic 
flow is constant): 

1 
u = ~ tanh(2y), v = 0, 

1 1 
P- M ,-4 ML 

T =  1 + M ~ ( 1 -  (2u)2). 

(21) 

The perturbation is either a small random function of x and 
y lying in the vicinity of y = 0, or a small deterministic 
perturbation of the form 

= ~ sin exp ( - y2 

v,= cos(_7_)exp_ y2, 
(22) 

where e represents the amplitude of the perturbation and 2 
is the non-dimensional wave length. The perturbation com- 
ponent on the horizontal velocity ensures the total pertur- 



bation to be divergence free. This type of divergence-free 
perturbation has already been employed in [25]. 

In this work, we address the temporal stability of the 
compressible mixing layer, therefore periodicity is assumed 
in the x-direction. In the y-direction the domain does not 
extend up to infinity as often assumed in theoretical 
analysis, but is bounded and the boundary conditions: 

Ou aT 
- - = 0 ,  v=0 ,  - - = 0  

are imposed at y = +_Ly, as considered in [-25]. In addition 
to the physical boundary conditions (23), we also use in the 
y-direction the condition 

@ 0 

coming from the projection of the momentum equation 
in the infinite Reynolds number limit on the horizontal 
boundary. The above boundary conditions provide a 
reasonably good approximation of an infinite domain when 
the outer flow is subsonic and the outer boundaries are 
located sufficiently far. The sensitivity of the solution on the 
location of these boundaries will be discussed later. We now 
describe the numerical method used for the present study. 
The spatial discretization is done by a Chebyshev col- 
location method in both spatial directions. Because of the 
periodicity assumption, it would have been more natural to 
use a Fourier expansion in the x-direction. However, as our 
ultimate goal is to study the spatial evolution of a com- 
pressible mixing layer, we choose here to directly implement 
a Chebyshev method in both directions. To simulate the 
periodicity conditions we use the boundary conditions, for 
W =  (p, u, v, p)', 

W(L., y, t )= W(O, y, t), 

OW(L~'Y'3x t ) =  ~-x W(O' y' t), 

monitoring the error in the x- and y-directions are defined 
by 

I(w) = ~ [wx(x, qj)2 
j = 0  1 

+ Wxx(X, qj)2] co(x) dx) 1/2 (27a) 

J(w)  = [w. (x , .  ,0 2 
(23) i =  = 0  i 

+ w,,(xi, r/) 2 ] co(r/) drl) 1/2 (27b) 

with similar formulae for the H" ]] 2 or ]. ]2 .... functionals. The 
quantity w used in their evaluation here is the horizontal 
component u of the velocity. Because we actually solve a 

(24) system of equations, it is possible to construct a composite 
function to take into account the spatial variation of the dif- 
ferent unknowns. However, in the present case, the horizon- 
tal velocity seems to be a good measure of the stiffness of the 
problem and has bee found to work well in practice. From 
the discussion of Section III, we also note that it is con- 
venient to choose a smooth function for w(x, rl) in (27); for 
instance, in the present case, taking the Mach number as the 
argument of the functional is, indeed, a very bad choice 
because this function is not regular at y = 0, especially at 
initial time. 

Time discretization uses a three-step, low-storage, explicit 
Runge-Kutta scheme [-26]. As is well known for explicit 
schemes, temporal stability requires the time step to satisfy 
a stability criterion. However, deriving this criterion from 
the complete set of equations, including boundary condi- 
tions, is very difficult. Moreover, even for simple linear 
equations like a constant-coefficients advection-diffusion 
equation, exact stability criteria for Chebyshev approxima- 
tions are not known. In a preliminary study, we experimen- 
tally found that a criterion for the one-dimensional advec- 
tion-diffusion equation with the Euler modified scheme was 

(25) 
1//[al X 2 vN4"~ 

At< /~-'-~o +---~1) (28) 

where L x is the spatial extent of the domain in the 
streamwise direction. To deal with the existence of large 
moving gradients, the self-adaptive procedure exposed in 
the previous section is employed. The mapping is of the 
form considered in (13), 

y=f(a,q)=Ly[,(1--a)rl3+arl], - l ~ r / ~ l ,  (26) 

where a is a parameter to be optimised in the range ]0, 1] 
and r/is the vertical coordinate in computational space. The 
same value of a is used for each x. Therefore the coordinate 
system is adapted in the y-direction only. The functionals 

where N is the degree of the polynomial approximation, a 
and v are respectively the constant advection velocity and 
the viscosity. K0 and Kl are two constants depending only 
of the type of the boundary conditions, i.e., K o -~ 17 for 
Dirichlet and Neumann conditions, K1 - 41 for Diriehlet, 
K1 "" 142 for Neumann conditions. The criterion (28) holds 
only for values of 1 ~< a/v <~ 1000. 

The criterion (28) is extended to the one-dimensional 
Navier-Stokes equations, in the form 

 t=min 1 (fuil+<)Too+ 7-  (29) 
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where mini denotes the minimum over all the collocation 
points, u is the velocity, and c is the sound speed In order 
to take into account the momentum and energy equations, 
the constant a is defined by 

(4 
a = m a x  321, Pr K 2 

The constants Ko, K~, and K2 depend on the type of 
boundary conditions associated with the velocity and the 
temperature. Following the heuristic way proposed by 
[22], this criterion is extrapolated to the two-dimensional 
case• Then it is modified to take into account the presence 
of the mapping (13), y =f(a, r/), and we finally obtain the 
rather complicated expression 

At = min C N 2 "4- ~i,j y 
( i , j )  x-- Ko 

ci; 4N 4 N4~ 
+-~o ~ ~ + f'(a, qj)2 

1 [4Naq N4y ~ (30) 
+ O ' - - R e  Pi, j ~ --UT--Lx f ' (a, r/j) 2 j j  

where 

[vi, j[ 4 f"(a, r/j)l 
Z,,j- If'(a, r/;)l + 3Re Pi.~ I ( f ' (a ,  r/ j))3 t ' 

Nx and Ny being the degree of the polynomial approxima- 
tion in the x- and y-directions, respectively• 

This criterion gives a useful guideline although it is not 
completely satisfactory; first, the constants have been deter- 
mined for the modified Euler scheme, rather than the three- 
level Runge-Kut ta  scheme. Then, the local linearization 
while conserving the behavior in N 2 or N 4 can lead to an 
underestimation of the allowable time step. Furthermore, 
the neglecting of the crossed derivatives is of questionable 
validity as the flow becomes strongly two-dimensional. 
Finally, the periodicity in the x-direction has not been taken 
into account. These features lead to an indetermination of 
the constant C. The calculations reported below have been 
performed with K 0 = 17, K1 = 41, K2 = 142, and C = 10. 
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Compared evolution of a for the three functionals. 

Let us also note that with the values of the physical 
parameters (Mach and Reynolds numbers) and numerical 
ones (numbers of collocation points) considered here, the 
convective and diffusive contributions are of the same 
magnitude. In other words, the maximum allowable time 
step is practically the one governed by first-order derivative 
terms, so that an implicit discretization of the diffusive terms 
(avoiding the N 4 term) would not improve the efficiency of 
the algorithm. 

Now we report some numerical experiments concerning 
mixing layer computations. Table I gives a complete list of 
the calculations reported here with the values of the signifi- 
cant parameters. All the experiments have been done with 
7 =  1.4. 

We first compare the behavior of the three functionals 

TABLE I 

List of Runs 

Run Moo Re Pr /1 Lx Ly Perturbation e 2 

A 0.8 400 1.0 Variable 20 25 Sinusoidal 0.1 20 
B 0.8 400 1.0 Constant 20 25 Sinusoidal 0.1 20 
C 0.8 400 1.0 Constant 20 10 Sinusoidal 0.1 20 
D 0.6 400 1.0 Constant 20 10 Sinusoidal 0.1 20 
E 0.8 400 1.0 Constant 20 50 Sinusoidal 0.1 20 
F 0.6 400 1.0 Constant 20 50 Sinuso'idal 0.1 20 
G 0.4 400 1.0 Constant 20 50 Sinusoidal 0.1 20 
H 0.5 1000 0.7 Variable 15.82 7•91 Random 0.005 7.91 



ADAPTIVE SPECTRAL METHODS 123 

T A B L E  II 

Comparison of the Extrema of ~o and p at t = 40, for the Three 
Different Functiofials 

11'112,~ Ll'lk~ I'[~ .... 

c%i . - 0.27455 -0.27622 - 0.27456 
COm~ x 5.4751 x 10 -3 5.2829 x 10 -3 5.8574 x 10 -3 
Pmin 0.65798 0.65814 0.65802 
P m~x 1.2014 1.2015 1.2016 

discussed in Section II, namely the H 2 and H 2 n o r m s  and 
the functional [12 .... . The test case is the run (A). 

The temporal evolution of the parameter  a computed 
with these three different functionals is shown in Fig. 5. It 
can be seen that, although the evolutions of a are similar for 
the three different cases, the value of a given by the func- 
tional of [3]  is always the lowest, while the largest is given 
by the weighted Sobolev norm. This can be explained by 
considering that the I'J2 .... and H 2 functionals give less 
weight to the boundaries than the H 2 norm; thus, this latter 
functional tends to give a larger importance to rather small 
variations of the function appearing far from the middle of 
the domain. This effect becomes more pronounced toward 
the end of the computation, where the values of a given by 
the different functionals begin to differ substantially. The 
results obtained with the three functionals are almost 

.18 6~,/~5i ' ]2.8 
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Evolution of a and 6o~/~i along time. 
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40 

undistinguishable when looking at the contour curves or at 
the profiles of the different quantities. 

Table II presents a more precise comparison between the 
results obtained with the three different definitions of the 
functional. One can see that the relative difference on the 
maximum values of the vorticity field never exceeds 3 % 
while the variation in the density field are even smaller. This 
might seem surprising, but the mapping sensitivity to the 
variations of the parameter a becomes weaker as a is 
increased; then, although the final values of the parameter a 
differ substantially for the three functionals, the location of 
the collocation points in the physical space are almost the 
same. 

Let us define, in dimensional units, a quantity commonly 
used to measure the development of the shear layer 
instability, i.e., the vorticity thickness, 

V~ 
~°9 ~ ( b / + ° °  - -  H - ~ ) /  ~ y  ( - - ~ - )  m a x  

(31) 

where fi and ~-~ are spatial averages in the x-direction. 
Figure 6 shows the evolution of the parameter  a defining the 
mapping (13), together with the evolution of the vorticity 
thickness. The parallel evolution of this parameter  and of 
the thickness of the mixing layer is remarkable and indicates 
that the adaptive procedure is effective in distributing the 
collocation points inside the zone of large derivatives while 
the layer is expanding. We recall here that when using 
Method C described in Section III,  we were unable to 
obtain such a nice behavior of the coordinate transform. 

The evolution of the mixing layer is visualized by instan- 
taneous contours of the potential vorticity, c o / p ,  co being the 
vorticity defined here by co -= ( v  x - U y ) / 2 .  Figure 7 shows the 
isolines of c o / p  in the central part  of the domain between 
y =  - 5  and y =  5 up to time t = 4 0 ,  for the case A. The 
adaptive method used in the presented calculat ion has 
employed the H 2 norm; at t = 0, there were 61 x 101 points 
and the refinement procedure did not find it necessary to 
increase Nx or Ny up to t = 40. 

One can see how, in response to the perturbation intro- 
duced in the basic flow that the isolines bend and the layer 
thickens while time increases. In Figure 8 the evolution of 
the vorticity profiles at x ~- 2.93 is shown. The amplitude of 
the initial sharp gradient at the center part of the domain 
decreases while the layer thickens. Also note that the regions 
of large second derivatives move from the origin and that 
local extrema appear at the outer part of the layer. 

After t = 4 5 ,  regions of strong compression appear in 
the flow and the results are seriously contaminated by 
spurious oscillations due to the insufficient resolution of 
the x-direction. The adaptive procedure reacts to the 
appearance of these compressions by refining the mesh in 
this direction. However, even with a fast increase in the 
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number of collocation points (it has been doubled by the 
adaptive algorithm between t = 45 and t = 60), the results 
remain oscillatory and have to be filtered. Restricting 
ourselves to shock-free configurations, no special treatment 
for this case has been developed. 

time = 0. min. = -0.59081 
0 time-steps max. = 0.87941E-02 

time = 20.000 min. = -0.45273 
3887 time-steps max. = 0.64587E-02 

time = 30.000 min. = -0.43048 
5228 time-steps max. = 0.51756E-02 

ume = 40.000 min. = -0.41804 
6211 time-steps max. = 0.50227E-02 

FIG. 7. Evolution of co/p. 

25 ¸ 

-25 

Y 

0.I 

t = O  t = 2 0  t = 3 0  
• Im 

On Figure 6, in solid line, the evolution of 6<o/6 i is 
plotted. The results are in very close agreement with those 
obtained in [25], using a second-order finite difference 
method. Their most accurate results using a 150 x 150 mesh 
yield at t = 4 0 ,  a value of 6,o/6~'~2.55, while the present 
computations show 6o~/6~ ~ 2.60. 

To investigate the influence of variable viscosity, in 
Table I I I  we have summarized the differences between con- 
stant (ease B) and variable (case A) viscosity. The extrema 
of vorticity and density show little changes (about 3 %)  
between the two cases, and the vorticity thickness variation 
is less than 1%. Thus, using constant viscosity rather than 
Sutherland's law when temperature changes moderately is a 
valid approximation in such flows. 

We now study the effects of the location of the 
y-boundaries on the development of the instability. In Fig. 9 
we show the compared growth of the vorticity thickness in 
cases B and C that differ only by the location of the 
y=boundaries. To point out the influence of acoustic effects, 
the reference time here is taken as the "acoustic" time 
t r e  f = Oi/Co~. Therefore, the relation between the nondimen- 
sional "acoustic" time and the nondimensional time t used 
previously is 7= t / 2M~.  We note that, approximately at 
7 = 20, the two quantities begin to differ substantially. This 
difference may be due to the reflexion of acoustic waves on 
the y-boundaries. As a matter  of fact, considering only verti- 
cal propagation of sound waves, neglecting the vertical fluid 
velocity component  v, and approximating the sound speed 
by its free stream value c~ ,  it appears that a sound wave 
generated in the layer at 7 = 0 reaches the outer boundaries 
y = +_ Ly at time 7 / ~ Ly. After reflexion, it comes back to the 
layer, reaching it at 7 t ,,~ 2Ly. The test case C has the nearest 
y-boundaries (Ly = 10), and their influence is seen as 7l ~ 20. 

TABLE HI 

Comparison of the Extrema ofp and cn and of Vorticity Thickness 
at t = 40, Moo - 0.8, for Constant and Variable Viscosity 

/t ~Omi n (.Oma × Pmin Pmax ~o>/~i 

Constant --0.28054 5.4359 x 10 -3 0.65159 1.2033 2.62 
Variable -0.27622 5.2829 × 10 -3 0.65814 1.2015 2.60 
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FIG. 9. Compared evolution of 6~o/6~, for different locations of the 
y-boundaries, Moo = 0.8. 
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FIG. 10. Compared evolution of 6o,/6~, for different locations of the 
y-boundaries, M~ = 0.6. 

tame = 50.000 min. = -0.41459 
15994 time-steps max. = 0.42087E-02 

ime = 50.000 rain. = -0.41877 
14658 time-steps max. = 0,43453E-02 

i m e =  50.000 min. = -0.41965 
14307 time-steos max. = 0.50967E-02 

FIG. 11. Evolution of ~o/p, for Moo =0.4 (top), M~=0.6 (middle) 
and M~ = 0.8 (bottom). 

F o r  conf i rmat ion,  this exper iment  has been repeated  with 
M ~  = 0.6 in test cases F and  D, that  differ only  by the loca- 
t ion of the y -bounda ry .  In  tha t  case, the predic ted  t ime tt is 
also tt,,~ 20. As shown in Fig. 10, whose plots  represent  the 
c o m p a r e d  evolut ions  of  vor t ic i ty  thickness versus the 
"acoust ic"  t ime  in cases F and  D, it is seen tha t  the two 
curves separa te  at 7 = 7t approx imate ly .  The  separa t ion  of 
the curves for the cases at M ~  = 0.8 is more  percept ib le  than  
for the ones at  M ~  = 0.6, because an acoust ic  pe r tu rba t ion  
is of  ampl i tude  O(M~). 

We conclude  from these exper iments  that  s imula t ing  
an open subsonic  flow with sl ip-wall  condi t ions  is valid, 
p rov ided  that  these boundar i e s  are loca ted  sufficiently far. 
When  M ~  = 0.8 and  L v = 25, for instance, the sound  wave 
will have come back to the layer  at  tt ~ 50. Thus,  we can 
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time = 80.000 rain. = -0.38122 
15616 time-steps max. = 0.90859E-04 

t ime= 95.000 min .=  -0.37643 
20180 time-steps max. = 0.82460E-03 

time = 105.013 rain. = -0.37226 
28940 time-steps max. = 0.53093E-03 

tame = 110.00 rain. = -0.37136 
33500 time-steps max. = 0.63484E-03 

F I G .  12. Moo =0 .5 ,  evolut ion ofco/p. 

reasonably admit that at t = 40, corresponding to ?~= 25, 
our calculations have not suffered from acoustic reflexions 
on the y-boundaries. 

In order to illustrate the effects of compressibility in 
mixing layer phenomena, we show in Fig. 11 the potential 
vorticity contours at t -- 50 for cases E, F, and G. The three 
figures have been post-processed by application of a raised- 
cosine filter in the x-direction, to withdraw spurious oscilla- 
tions in this direction. The case with Moo = 0.4, being the 
less compressible, is the one with the faster growth rate. On 
the contrary, the case Moo = 0.8 shows a very slow develop- 
ment. This is in agreement with the stabilizing effect of com- 
pressibility predicted by stability theory. Furthermore, it is 
interesting to note the change in the aspect of the vortex, 
becoming more elongated as M s  grows, is due to baroclinic 
and dilatational effects [24]. 

As a final illustration, we apply the method to a situation 

where a vortex pairing is occurring. The mixing layer is now 
excited by a random perturbation for a convective Mach 
number of 0.5 (test case H). The length of the box has been 
chosen to be two times the most amplified inviscid 
wavelength predicted by linear stability theory [8].  The 
evolution of the layer is depicted in Fig. 12. It shows the 
potential vorticity instantaneous contours at four different 
times. The pictures show the entire computational domain 
and thus, from the preceding discussion, it must be noted 
that the results are not free from the influence of the 
y-boundaries. At t = 80, in accordance with linear stability 
theory, two vortices have been created from the initial 
perturbation. As the vorticity is of the same sign in the layer, 
the two vortices begin to join at t = 95. Ten characteristic 
times la[er, they are rolling over each other. The pairing 
event is shown to be almost completed at t = 110. 

The computation has begun with 81 x 81 points. The 
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number  of  poin ts  was increased au tomat i ca l ly  by the 

adap t ive  p rocedure  descr ibed above  and reached 129 x 129 
between t = 90 and  t = 100; this gave us a mesh of  181 x 129 

at  t = 110 by the end of  the computa t ion .  The number  of  
poin ts  in the x-d i rec t ion  is too  large c o m p a r e d  to the impor -  
tance of  the gradients.  In  this direct ion,  there is no mesh 
adap ta t ion ,  but  only  an enr ichment  m o n i t o r e d  by  the value 
of  ex, which was l ikely taken  too  small  in the present  case. 
O n  the o ther  hand,  in the y-di rec t ion ,  where the a d a p t a t i o n  
is present ,  the number  of poin ts  remains  relat ively small. 
The value of  the p a r a m e t e r  a of the mapp ing  (26) was 
a - 0.17 at  init ial  t ime and  has reached a value of a -~ 0.76 
at  t =  110. 

V. CONCLUSION 

We have discussed the app l ica t ion  of  self-adaptive 
Chebyshev  spectra l  me thods  to the compu ta t i ons  of 
compress ib le  mixing layers for subsonic convective Mach  
number .  These me thods  are found to work  well for this case, 
for different extents  of  the domain ,  a l lowing us to use a 
reasonable  number  of  co l loca t ion  points  and  accura te ly  
fol lowing the behav ior  of  the layer. Moreover ,  the me thod  
has been demons t r a t ed  to be efficient by successfully com- 
pu t ing  a pa i r ing  process.  A survey of the funct ionals  
p r o p o s e d  by var ious  au thor s  has been done  and a new inter- 
p re ta t ion  of the funct ional  p roposed  in [ 3 ]  has been given. 
N o  significant differences have been found in the results 
c o m p u t e d  with different functionals.  However ,  the com- 
pu t a t i on  of the funct ional  has been shown to be sensitive to 
careless a p p r o x i m a t i o n s  and the impor t ance  of filtering the 
a rgument  of the funct ional  has been po in ted  out  and  dis- 
cussed. F r o m  a more  physical  po in t  of view, we have also 
po in ted  out  the influence of the loca t ion  of the outer  bound-  
aries and  the effects of var iable  viscosity have been shown to 
be negligible for the modera t e ly  vary ing  t empera tu re  field of  
these computa t ions .  The C P U  cost  of a typical  c o m p u t a t i o n  
like A is a b o u t  2200 s on a C R A Y  II monoprocessor ,  and  
the c o m p u t a t i o n a l  cost  of the a d a p t i o n  p rocedure  is abou t  
2 % of  the to ta l  cost. 
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